5. Основные этапы решения инженерной задачи с применением ЭВМ


План:

1. Постановка проблемы.

2. Выбор или построение математической модели.

3. Постановка вычислительной задачи.

4.Предварительный (предмашинный) анализ свойств вычислительной задачи.

5. Выбор или построение численного метода.

6. Алгоритмизация и программирование.

7. Отладка программы.

8. Счет по программе.

9. Обработка и интерпретация результатов.

10. Использование результатов и коррекция математической модели.


Решение серьезной инженерной задачи с использованием ЭВМ - довольно длительный и сложный процесс. С определенной степенью условности его можно разбить на ряд последовательных этапов. Выделим следующие этапы: 1) постановка проблемы; 2) выбор или построение математической модели; 3) постановка вычислительной задачи; 4) предварительный (предмашинный) анализ свойств вычислительной задачи; 5) выбор или построение численного метода; 6) алгоритмизация и программирование; 7) отладка программы; 8) счет по программе; 9) обработка и интерпретация результатов; 10) использование результатов и коррекция математической модели.

1) Постановка проблемы. Первоначально прикладная задача бывает сформулирована в самом общем виде: исследовать некоторое явление, спроектировать устройство, обладающее заданными свойствами, дать прогноз поведения некоторого объекта в определенных условиях и т.д. На данной стадии происходит конкретизация постановки задачи, и первостепенное внимание при этом уделяется выяснению цели исследования. Этот очень важный и ответственный этап завершается конкретной формулировкой проблемы на языке, принятом в данной предметной области. Знание возможностей, которые дает применение ЭВМ, может оказать существенное влияние на окончательную формулировку проблемы.

2) Выбор или построение математической модели. Для последующего анализа исследуемого явления или объекта необходимо дать его формализованное описание на языке математики, т.е. построить математическую модель. Рассматриваемый этап — едва ли не самый важный и трудный. Часто удачный выбор математической моделиявляется решающим шагом к достижению цели. Одна из существенных трудностей такого выбора состоит в объективном противоречии между желанием сделать описание явления как можно более полным (что приводит к усложнению модели) и необходимостью иметь достаточно простую модель (чтобы была возможность реализовать ее на ЭВМ). Важно, чтобы сложность математической модели соответствовала сложности поставленной проблемы.

3) Постановка вычислительной задачи. На основе принятой  математической модели  формулируют вычислительную задачу (или ряд таких задач). Анализируя результаты ее решения, исследователь предполагает получить ответы на интересующие его вопросы.

4) Предварительный анализ свойств вычислительной задачи. На этом этапе проводят предварительное (предмашинное) исследование свойств вычислительной задачи. Большое внимание уделяют анализу корректности ее постановки, т.е. выяснению вопросов существования и единственности решения, а также исследованию устойчивости решения задачи к погрешностям входных данных. Такое исследование, как правило, относится к компетенции профессиональных математиков. Тем не менее инженеру полезно быть в курсе современного состояния названных проблем, уметь самостоятельно проводить простейшие исследования.

5) Выбор или построение численного метода. Для решения вычислительной задачи на ЭВМ требуется использование численных методов. Часто решение инженерной задачи сводится к последовательному решению стандартных вычислительных задач, для которых разработаны эффективные численные методы. В этой ситуации происходит либо выбор среди известных методов, либо их адаптация к особенностям решаемой задачи. Однако если возникающая вычислительная задача является новой, то не исключено, что для ее решения не существует готовых методов. Построение численного метода для такой задачи может оказаться очень трудной проблемой и потребовать привлечения специалиста по вычислительной математике. Умение различать отмеченные две ситуации необходимо, и наличие его уже говорит об определенной квалификации в области вычислительных методов.

Для решения одной и той же вычислительной задачи обычно может быть использовано несколько методов. Необходимо знать особенности этих методов, критерии, по которым оценивается их качество, чтобы выбрать метод, позволяющий решить проблему наиболее эффективным образом. Здесь выбор далеко не однозначен. Он существенно зависит от требований, предъявляемых к решению, от имеющихся в наличии ресурсов, от доступной для использования вычислительной техники и т.д.

6) Алгоритмизация и программирование. Как правило, выбранный

на предыдущем этапе численный метод содержит только принципиальную схему решения задачи, не включающую многие детали, без которых невозможна реализация метода на ЭВМ. Необходима подробная детализация всех этапов вычислений, для того чтобы получить реализуемый на ЭВМ алгоритм. Составление программы сводится к переводу этого алгоритма на выбранный язык программирования.

7) Отладка программы. На этом этапе с помощью ЭВМ выявляют и исправляют ошибки в программе. Наличие в программах ошибок — вполне нормальное и закономерное явление. Поэтому подготовку к отладке следует начинать уже на этапе алгоритмизации и программирования. Заметим, что эффективность отладки самым существенным образом зависит от общей методики разработки программ. После устранения ошибок программирования необходимо провести тщательное тестирование программы — проверку правильности ее работы на специально отобранных тестовых задачах, имеющих известные решения.

8) Счет по программе. На этом этапе происходит решение задачи на ЭВМ по составленной программе в автоматическом режиме. Этот процесс, в ходе которого входные данные с помощью ЭВМ преобразуются в результат, называют вычислительным процессом. Как правило, счет повторяется многократно с различными входными данными для получения достаточно полной картины зависимости от них решения задачи.

Первые полученные результаты тщательно анализируются, для того чтобы убедиться в правильности работы программы и пригодности выбранного метода решения. Счет по программе продолжается несколько секунд, минут или часов. Именно быстротечность этого этапа порождает распространенную иллюзию о возможности решать важные прикладные задачи на ЭВМ в очень короткое время. В действительности же, конечно, необходимо принимать во внимание весь цикл от постановки проблемы до использования результатов. Для серьезных задач часто полезные результаты получаются только в результате многолетней работы.

9) Обработка и интерпретация результатов. Полученные в результате расчетов на ЭВМ выходные данные, как правило, представляют собой большие массивы чисел. Зачастую первоочередной интерес представляет лишь небольшая часть полученной информации (например, значения одной из функций в выделенных точках) или даже некоторая грубая интегральная характеристика (максимальное или минимальное значение, оценка энергии системы и т.д.). Для того чтобы исследователь мог воспользоваться результатами расчетов, их необходимо представить в виде компактных таблиц, графиков или в иной удобной для восприятия форме. При этом следует максимально использовать возможности ЭВМ для подготовки такой информации и ее представления с помощью печатающих и графических выходных устройств.

Для правильной интерпретации результатов расчетов и оценки их достоверности от исследователя требуется глубокое знание существа решаемой инженерной задачи, ясное представление об используемой математической модели и понимание (хотя бы в общих чертах) особенностей применяемого вычислительного метода.

10) Использование результатов и коррекция математической модели.

Завершающий этап состоит в использовании результатов расчетов в практической деятельности, иначе говоря, во внедрении результатов. Не стоит огорчаться, если большинство полученных сначала результатов окажется бесполезным. Действительно полезные для практики результаты являются плодом серьезной целенаправленной работы, в процессе которой цикл решения задачи повторяется неоднократно. Очень часто анализ результатов, проведенный на этапе их обработки и интерпретации, указывает на несовершенство используемой математической модели и необходимость ее коррекции. В таком случае математическую модель модифицируют (при этом она, как правило, усложняется) и начинают новый цикл решения задачи.

Литература [2], [3], [4], [13].